Examen 2
Efecto fotoeléctrico.
El primero de sus artículos de 1905 se titulaba Un punto de vista heurístico sobre la producción y transformación de luz. En él Einstein proponía la idea de "quanto" de luz (ahora llamados fotones) y mostraba cómo se podía utilizar este concepto para explicar el efecto fotoeléctrico.
La teoría de los cuantos de luz fue un fuerte indicio de la dualidad onda-corpúsculo y de que los sistemas físicos pueden mostrar tanto propiedades ondulatorias como corpusculares. Este artículo constituyó uno de los pilares básicos de la mecánica cuántica. Una explicación completa del efecto fotoeléctrico solamente pudo ser elaborada cuando la teoría cuántica estuvo más avanzada. Por este trabajo, y por sus contribuciones a la física teórica, Einstein recibió el Premio Nobel de Física de 1921.
Los fotones del rayo de luz tienen una energía característica determinada por la frecuencia de la luz. En el proceso de fotoemisión, si un electrón absorbe la energía de un fotón y éste último tiene más energía que la función trabajo, el electrón es arrancado del material. Si la energía del fotón es demasiado baja, el electrón no puede escapar de la superficie del material. Aumentar la intensidad del haz no cambia la energía de los fotones constituyentes, solo cambia el número de fotones. En consecuencia, la energía de los electrones emitidos no depende de la intensidad de la luz, sino de la energía de los fotones.
Los electrones pueden absorber energía de los fotones cuando son irradiados, pero siguiendo un principio de "todo o nada". Toda la energía de un fotón debe ser absorbida y utilizada para liberar un electrón de un enlace atómico, o si no la energía es re-emitida. Si la energía del fotón es absorbida, una parte libera al electrón del átomo y el resto contribuye a la energía cinética del electrón como una partícula libre.
Einstein no se proponía estudiar las causas del efecto en el que los electrones de ciertos metales, debido a una radiación luminosa, podían abandonar el metal con energía cinética. Intentaba explicar el comportamiento de la radiación, que obedecía a la intensidad de la radiación incidente, al conocerse la cantidad de electrones que abandonaba el metal, y a la frecuencia de la misma, que era proporcional a la energía que impulsaba a dichas partículas.
El trabajo de Einstein predecía que la energía con la que los electrones escapaban del material aumentaba linealmente con la frecuencia de la luz incidente. Sorprendentemente este aspecto no había sido observado en experiencias anteriores sobre el efecto fotoeléctrico. La demostración experimental de este aspecto fue llevada a cabo en 1915 por el físico estadounidense Robert Andrews Millikan.
Efecto doppler.
El efecto Doppler, llamado así por el austríaco Christian Andreas Doppler, es el aparente cambio de frecuencia de una onda producida por el movimiento relativo de la fuente respecto a su observador. Doppler propuso este efecto en 1842 en su tratado Über das farbige Licht der Doppelsterne und einige andere Gestirne des Himmels (Sobre el color de la luz en estrellas binarias y otros astros).
El científico neerlandés Christoph Hendrik Diederik Buys Ballot investigó esta hipótesis en 1845 para el caso de ondas sonoras y confirmó que el tono de un sonido emitido por una fuente que se aproxima al observador es más agudo que si la fuente se aleja.Hippolyte Fizeau descubrió independientemente el mismo fenómeno en el caso de ondas electromagnéticas en 1848. En Francia este efecto se conoce como "efecto Doppler-Fizeau" y en los Países Bajos como el "efecto Doppler-Gestirne".
En el caso del espectro visible de la radiación electromagnética, si el objeto se aleja, su luz se desplaza a longitudes de onda más largas, desplazándose hacia el rojo. Si el objeto se acerca, su luz presenta una longitud de onda más corta, desplazándose hacia el azul. Esta desviación hacia el rojo o el azul es muy leve incluso para velocidades elevadas, como las velocidades relativas entre estrellas o entre galaxias, y el ojo humano no puede captarlo, solamente medirlo indirectamente utilizando instrumentos de precisión como espectrómetros. Si el objeto emisor se moviera a fracciones significativas de la velocidad de la luz, sí sería apreciable de forma directa la variación de longitud de onda.
c) efecto Mossbauer.
Con anterioridad se había observado la emisión y absorción de rayos X por parte de gases, por lo tanto se pensaba que un fenómeno similar se observaría con los rayos gamma, que se originan en las transiciones nucleares (a diferencia de los rayos X que se producen por transiciones de electrones). Sin embargo, fallaron los intentos por observar resonancias de rayos gamma en gases debido a la energía que se pierde en el retroceso, lo que imposibilita la resonancia (el efecto Doppler también ensancha el espectro de los rayos gamma). Sin embargo Mössbauer pudo observar resonancias en iridio en estado sólido, lo que disparó la pregunta sobre por qué era posible observar resonancia de rayos gamma en los sólidos, pero no en los gases. Mössbauer propuso que, para el caso de átomos que se encuentran contenidos dentro de un sólido, bajo ciertas circunstancias una fracción de los eventos nucleares podían tener lugar sin que se produjera un retroceso. Atribuyó la resonancia observada a esta fracción de eventos nucleares en los cuales no se dispersaría energía en fenómenos de retroceso. Por este descubrimiento se le concedió el Premio Nobel de Física en el año 1961 junto con Robert Hofstadter por su trabajo en el campo de la dispersión de electrones en el núcleo de los átomos.
En general, los rayos gamma son producto de transiciones nucleares: entre un estado inestable de alta energía, a un estado de menor energía. La energía del rayo gamma emitido corresponde a la energía de la transición nuclear, menos la cantidad de energía que se pierde en el retroceso (o desplazamiento) del átomo que la emite. Si la "energía de retroceso" que se pierde es pequeña comparada con el ancho de la energía de la transición nuclear, entonces la energía del rayo gamma todavía se corresponde con la energía de la transición nuclear, y el rayo gamma puede ser absorbido por un segundo átomo del mismo tipo que el primero. Esta emisión y posterior absorción es llamada resonancia. Energía de retroceso adicional es también utilizada durante la absorción, de forma tal que para que la resonancia pueda producirse la energía de retroceso debe ser menor que la mitad de la energía correspondiente a la transición nuclear.
d) efecto de aberración.
El descubrimiento de Bradley, la llamada aberración estelar, es análoga a la situación que se produce cuando caen gotas de lluvia. Una gota de lluvia, aunque caiga verticalmente con respecto a un observador en reposo en la tierra, cae en ángulo para un observador en movimiento. De este modo, un modelo corpuscular de la luz podría explicar la aberración estelar muy fácilmente. Por otra parte, la teoría ondulatoria también brinda una explicación satisfactoria, siempre que el éter permanezca totalmente quieto cuando la Tierra lo surca.
La diferencia máxima entre la posición observada y la posición real de un astro alcanza un máximo de 20.47 segundos de arco denominándose constante de aberración. La tangente trigonométrica de la constante de aberración se aproxima mucho a la razón de la velocidad orbital terrestre a la velocidad de la luz (esta fórmula sencilla es una aproximación a la fórmula relativista exacta).
conclusiones:
en los efectos anteriormente mencionados se nos dice que la apreciación de cada efecto es aparente como si el fenómeno actuara dependiendo de la poscicion del observador, pero esto es totalmente falso ya que el efecto de dicho fenómeno sera igual sin importar la posición, la distancia o el lugar donde se encuentre el observador; lo que en realidad pasa es que el observador es el que percibe un efecto distorsionado del fenómeno debido a que su marco de referencia con respecto a otro observador es diferente, si el marco de referencia fuera igual para ambos observadores el efecto del fenómeno seria apreciado de igual manera.
yo pienso que el efecto de Mossbauer y el efecto de Doppler son similares ya que el primero se presenta en ondas que no son visibles a simple vista, sin embargo presentan el mismo comportamiento que ondas perceptibles a los sentidos, este comportamiento igual dependerá del marco de referencia utilizado para explicar el comportamiento de dicha onda ya sea una onda que presente el efecto Mossbauer o efecto Doppler la apreciación nótese apreciación mas no efecto dependerá del marco de referencia elegido para dicho fenómeno.
No hay comentarios:
Publicar un comentario